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ABSTRACT
The commonly used LRU replacement policy is susceptible to
thrashing for memory-intensive workloads that have a working set
greater than the available cache size. For such applications, the
majority of lines traverse from the MRU position to the LRU po-
sition without receiving any cache hits, resulting in inefficient use
of cache space. Cache performance can be improved if some frac-
tion of the working set is retained in the cache so that at least that
fraction of the working set can contribute to cache hits.

We show that simple changes to the insertion policy can signif-
icantly reduce cache misses for memory-intensive workloads. We
propose the LRU Insertion Policy (LIP) which places the incoming
line in the LRU position instead of the MRU position. LIP pro-
tects the cache from thrashing and results in close to optimal hit-
rate for applications that have a cyclic reference pattern. We also
propose the Bimodal Insertion Policy (BIP) as an enhancement of
LIP that adapts to changes in the working set while maintaining the
thrashing protection of LIP. We finally propose aDynamic Insertion
Policy (DIP) to choose between BIP and the traditional LRU pol-
icy depending on which policy incurs fewer misses. The proposed
insertion policies do not require any change to the existing cache
structure, are trivial to implement, and have a storage requirement
of less than two bytes. We show that DIP reduces the average MPKI
of the baseline 1MB 16-way L2 cache by 21%, bridging two-thirds
of the gap between LRU and OPT.

Categories and Subject Descriptors:
B.3.2 [Design Styles]: Cache memories
General Terms: Design, Performance.
Keywords: Replacement, Thrashing, Set Sampling, Set Dueling.

1. INTRODUCTION
The LRU replacement policy and its approximations have re-

mained as the de-facto standard for replacement policy in on-chip
caches over the last several decades. While the LRU policy has
the advantage of good performance for high-locality workloads, it
can have a pathological behavior for memory-intensive workloads
that have a working set greater than the available cache size. There
have been numerous proposals to improve the performance of LRU,
however, many of these proposals incur a huge storage overhead,
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significant changes to the existing design, and poor performance
for LRU-friendly workloads. Every added structure and change to
the existing design requires design effort, verification effort, and
testing effort. Therefore, it is desirable that changes to the con-
ventional replacement policy require minimal changes to the ex-
isting design, require no additional hardware structures, and per-
form well for a wide variety of applications. This paper focuses on
designing a cache replacement policy that performs well for both
LRU-friendly and LRU-averse workloads while requiring negligi-
ble hardware overhead and changes.

We divide the problem of cache replacement into two parts: vic-
tim selection policy and insertion policy. The victim selection pol-
icy decides which line gets evicted for storing an incoming line,
whereas, the insertion policy decides where in the replacement list
the incoming line is placed. For example, the traditional LRU re-
placement policy inserts the incoming line in the MRU position,
thus using the policy of MRU Insertion. Inserting the line in the
MRU position gives the line a chance to obtain a hit while it tra-
verses all the way from the MRU position to the LRU position.
While this may be a good strategy for workloads whose working-
set is smaller than the available cache size or for workloads that
have high temporal locality, such an insertion policy causes thrash-
ing for memory-intensive workloads that have a working set greater
than the available cache size. We show that with the traditional
LRU policy, more than 60% of the lines installed in the L2 cache re-
main unused between insertion and eviction. Thus, most of the in-
serted lines occupy cache space without ever contributing to cache
hits. When the working set is larger than the available cache size,
cache performance can be improved by retaining some fraction of
the working set long enough that at least that fraction of the work-
ing set contributes to cache hits. However, the traditional LRU pol-
icy offers no protection for retaining the cache lines longer than the
cache capacity.

We show that simple changes to the insertion policy can sig-
nificantly improve cache performance for memory-intensive work-
loads while requiring negligible hardware overhead. We propose
the LRU Insertion Policy (LIP) which places all incoming lines in
the LRU position. These lines are promoted from the LRU position
to the MRU position only if they get referenced while in the LRU
position. LIP prevents thrashing for workloads whose working set
is greater than the cache size and obtains near-optimal hit rates for
workloads that have a cyclic access pattern. LIP can easily be im-
plemented by avoiding the recency update at insertion.

LIP may retain the lines in the non-LRU position of the recency
stack even if they cease to contribute to cache hits. Since LIP does
not have an aging mechanism, it may not respond to changes in
the working set of a given application. We propose the Bimodal
Insertion Policy (BIP), which is similar to LIP, except that BIP in-
frequently (with a low probability) places the incoming line in the
MRU position. We show that BIP adapts to changes in the working
set while retaining the thrashing protection of LIP.



For LRU-friendly workloads that favor the traditional policy of
MRU insertion, the changes to the insertion policy are detrimen-
tal to cache performance. We propose a Dynamic Insertion Policy
(DIP) to choose between the traditional LRU policy and BIP de-
pending on which policy incurs fewer misses. DIP requires runtime
estimates of misses incurred by each of the competing policies. To
implement DIP without requiring significant hardware overhead,
we propose Set Dueling. The Set Dueling mechanism dedicates a
few sets of the cache to each of the two competing policies and uses
the policy that performs better on the dedicated sets for the remain-
ing follower sets. We analyze both analytical as well as empirical
bounds for the number of dedicated sets and show that as few as
32 to 64 dedicated sets are sufficient for Set Dueling to choose the
best policy. An implementation of DIP using Set Dueling requires
no extra storage other than a single saturating counter and performs
similar to LRU for LRU-friendly workloads.

Insertion policies come into effect only during cache misses,
therefore, changes to the insertion policy do not affect the access
time of the cache. The proposed changes to the insertion pol-
icy are particularly attractive as they do not require any changes
to the structure of an existing cache design, incur only a negli-
gible amount of logic circuitry, and have a storage overhead of
less than two bytes. Our evaluations, with 16 memory-intensive
benchmarks, show that DIP reduces the average misses per 1000
instructions (MPKI) for a 1MB 16-way LRU-managed L2 cache by
21.3%, bridging two-thirds of the gap between LRU and Belady’s
Optimal replacement (OPT) [1].

2. MOTIVATION
A miss in the L2 cache (last-level cache in our studies) stalls the

processor for hundreds of cycles, therefore, our study is focused
on reducing L2 misses by managing the L2 cache efficiently. The
access stream visible to the L2 cache has filtered temporal locality
due to the hits in the first-level cache. The loss of temporal locality
causes a significant percentage of L2 cache lines to remain unused.
We refer to cache lines that are not referenced between insertion
and eviction as zero reuse lines. Figure 1 shows that for the base-
line 1MB 16-way LRU-managed L2 cache,more than half the lines
installed in the cache are never reused before getting evicted. Thus,
the traditional LRU policy results in inefficient use of cache space
as most of the lines installed occupy cache space without contribut-
ing to cache hits.
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Figure 1: Zero Reuse Lines for 1MB 16-way L2 cache

Zero reuse lines occur because of two reasons. First, the line
has no temporal locality which means that the line is never re-
referenced. It is not beneficial to insert such lines in the cache.
Second, the line is re-referenced at a distance greater than the cache
size, which causes the LRU policy to evict the line before it gets
reused. Several studies have investigated bypassing [10][3][6][19]
and early eviction [21][20] of lines with poor temporal locality.
However, temporal locality exploited by the cache is a function of
both the replacement policy and the size of the working set relative

to the available cache size. For example, if a workload frequently
reuses a working set of 2 MB, and the available cache size is 1MB,
then the LRU policy will cause all the installed lines to have poor
temporal locality. In such a case, bypassing or early evicting all
the lines in the working set will not improve cache performance.
The optimal policy in such cases is to retain some fraction of the
working set long-enough so that at least that fraction of the work-
ing set provides cache hits. However, the traditional LRU policy
offers no protection for retaining the cache lines longer than the
cache capacity.

For workloads with a working set greater than the available cache
size, cache performance can be significantly improved if the cache
can retain some fraction of the working set. To achieve this, we sep-
arate the replacement policy into two parts: victim selection policy
and insertion policy. The victim selection policy decides which
line gets evicted for storing an incoming line. The insertion policy
decides where in the replacement list the incoming line is placed.
We propose simple changes to the insertion policy that significantly
improve cache performance of memory-intensive workloads while
requiring negligible overhead. We present our methodology before
discussing the solution.

3. EXPERIMENTAL METHODOLOGY

3.1 Configuration
We use a trace-driven cache simulator for all the experiments in

the paper, except for the IPC results shown in Section 6.3. We de-
fer the description of our execution driven simulator to that section.
Table 1 shows the parameters of the first level instruction (I) and
data (D) caches that we used to generate the traces for our second
level cache. The L1 cache parameters were kept constant for all ex-
periments. The baseline L2 cache is 1MB 16-way set associative.
All caches in the baseline use a 64B line-size. We do not enforce
inclusion in our memory model. Throughout this paper, LRU de-
notes the traditional LRU policy which inserts all incoming lines in
the MRU position. Unless stated otherwise, all caches use the LRU
policy for replacement decisions.

Table 1: Cache Configuration
L1 I-Cache 16kB; 64B linesize; 2-way with LRU repl.
L1 D-Cache 16kB; 64B linesize; 2-way with LRU repl.
Baseline L2 1 MB; 64B linesize; 16-way with LRU repl.

3.2 Benchmarks
The SPEC CPU2000 benchmarks used in our study were com-

piled for the Alpha ISA with -fast optimizations and profiling
feedback enabled. For each SPEC benchmark, we use a represen-
tative sample of 250M instructions obtained with a tool that we
developed using the SimPoint [12] methodology. Since cache re-
placement does not affect the number of compulsory misses, bench-
marks that have a high percentage of compulsory misses are un-
likely to benefit from improvements in cache replacement algo-
rithms. Therefore, we show detailed results only for benchmarks
for which approximately 50% or fewer misses are compulsory misses.1
In addition to the SPEC benchmarks, we also used the health bench-
mark from the Olden suite as it represents a workload in which the
working set increases with time. We ran the health benchmark to
completion. Table 2 shows the fast-forward interval (FFWD), the
number of L2 misses per 1000 instructions (MPKI), and the per-
centage of misses that are compulsory misses for each benchmark.
1For the 11 SPEC benchmarks excluded from our studies, the pro-
posed technique (DIP) changes MPKI by ≤ 0.01.



Table 2: Benchmark summary (B = Billion)
Name FFWD MPKI Compulsory Misses
art 18.25B 38.7 0.5%
mcf 14.75B 136 1.8%
twolf 30.75B 3.48 2.9%
vpr 60B 2.16 4.3%
facerec 111.75B 3.66 4.8%
ammp 4.75B 2.83 5.0%
galgel 14B 5.34 5.9%
equake 26.25B 18.4 14.2%
bzip2 2.25B 2.4 14.8%
parser 66.25B 1.57 20.0%
sixtrack 8.5B 0.42 20.7%
apsi 3.25B 0.32 21.4%
lucas 2.5B 16.2 41.6%
mgrid 3.5B 7.73 46.6%
swim 3.5B 23.0 50.4%
health 0B 61.7 0.73%

4. STATIC INSERTION POLICIES
The traditional LRU replacement policy inserts all incoming lines

in the MRU position. Inserting the line in the MRU position gives
the line a chance to obtain a hit while it traverses all the way from
the MRU position to the LRU position. While this may be a good
strategy for workloads whose working set is smaller than the avail-
able cache size or for workloads that have high temporal local-
ity, such an insertion policy causes thrashing for memory-intensive
workloads that have a working set greater than the available cache
size. When the working set is greater than the available cache size,
cache performance can be improved by retaining some fraction of
the working set long enough that at least that fraction of the work-
ing set results in a cache hits.

For such workloads, we propose the LRU Insertion Policy (LIP),
which places all incoming lines in the LRU position. These lines
are promoted from the LRU position to the MRU position only if
they are reused while in the LRU position. LIP prevents thrashing
for workloads that reuse a working set greater than the available
cache size. To our knowledge this is the first study to investigate
the insertion of demand lines in the LRU position. Earlier studies
[2] have proposed to insert prefetched lines in the LRU position to
reduce the pollution caused by inaccurate prefetching. However,
they were targeting the problem of extraneous references generated
by the prefetcher while our study is targeted towards the funda-
mental locality problem in memory reference streams. With their
proposal, demand lines are still inserted in the MRU position mak-
ing the cache susceptible to thrashing by demand references. Our
proposal, LIP, protects the cache from thrashing by inserting all in-
coming lines in the LRU position. Our work can be combined with
Lin et al.’s work to protect the cache from both thrashing as well as
prefetcher pollution.

LIP may retain the lines in the non-LRU position of the recency
stack even if they cease to be re-referenced. Since LIP does not
have an aging mechanism, it may not respond to changes in the
working set of the given application. We propose the Bimodal In-
sertion Policy (BIP) which is similar to LIP, except that it infre-
quently (with a low probability) places some incoming lines into
the MRU position. BIP is regulated by a parameter, bimodal throt-
tle parameter (ε), which controls the percentage of incoming lines
that are placed in the MRU position. Both the traditional LRU pol-
icy and LIP can be viewed as a special case of BIP with ε = 1 and
ε = 0 respectively. In Section 4.1 we show that for small values of
ε, BIP can adapt to changes in the working set while retaining the
thrashing protection of LIP.

4.1 Analysis with Cyclic Reference Model
To analyze workloads that cause thrashing with the LRU pol-

icy, we use a theoretical model of cyclic references. A similar
model has been used earlier by McFarling [10] for modeling con-
flict misses in a direct-mapped instruction cache. Let ai denote the
address of a cache line. Let (a1 · · ·aT ) denote a temporal sequence
of references a1, a2, ..., aT . A temporal sequence that repeats for
N times is represented as (a1 · · · aT )N .

Let there be an access pattern in which (a1 · · · aT )N is followed
by (b1 · · · bT )N . We analyze the behavior of this pattern for a
fully associative cache that contains space for storing K(K < T )
lines. We assume that the parameter ε in BIP is small, and that both
sequences in the access pattern repeat many times (N >> T and
N >> K/ε ). Table 3 compares the hit-rate of LRU, OPT, LIP,
and BIP for this access pattern.

Table 3: Hit Rate for LRU, OPT, LIP, and BIP
(a1 · · · aT )N (b1 · · · bT )N

LRU 0 0
OPT (K − 1)/T (K − 1)/T

LIP (K − 1)/T 0
BIP (K − 1 − ε · [T − K])/T ≈ (K − 1 − ε · [T − K])/T

≈ (K − 1)/T ≈ (K − 1)/T

As the cache size is less than T , LRU causes thrashing and re-
sults in zero hits for both sequences. The optimal policy is to retain
any (K − 1) lines out of the T lines of the cyclic reference so that
those (K −1) lines receive hits. After the cache is warmed up, Be-
lady’s OPT retains (K − 1) blocks out of the T blocks, achieving
a hit-rate of (K − 1)/T for both sequences. LIP behaves similar to
OPT for the first sequence. However, LIP never allows any element
of the second sequence to enter the non-LRU position of the cache,
thus, causing zero hits for the second sequence.

In each iteration, BIP inserts approximately ε · (T −K) lines in
the MRU position which means a hit-rate of (K−1−ε·[T−K])/T .
As the value of ε is small, BIP obtains a hit-rate of approximately
(K − 1)/T , which is similar to the hit-rate of LIP. However, BIP
probabilistically allows the lines of any sequence to enter the MRU
position. Therefore, when the sequence changes from the first to
the second, all the lines in the cache belong to the second sequence
after K/ε misses. For large N, the transition time from the first
sequence to the second sequence is small, and the hit-rate of BIP
is approximately equal to (K − 1)/T . Thus, for small values of ε,
BIP can respond to changes in the working set while retaining the
thrashing protection of LIP.

4.2 Case Studies of Thrashing Workloads
We analyze LIP and BIP in detail using three memory-intensive

benchmarks: mcf, art, and health. These benchmarks incur the
highest MPKI for the SPEC INT, SPEC FP, and Olden benchmark
suite respectively. The LRU policy results in thrashing as the work-
ing set of these benchmarks is greater than the baseline 1MB cache.
For all experiments in this section a value of ε = 1/32 is used.

4.2.1 The mcf benchmark:
Figure 2 shows the code structure from the implicit.c file of

the mcf benchmark with the three load instructions that are respon-
sible for 84% of the total L2 misses for the baseline cache.

The kernel of mcf can be approximated as linked-list traversals
of a data structure whose size is approximately 3.5MB. Figure 3
shows the MPKI for mcf when the cache size is varied under the
LRU policy. The MPKI reduces only marginally till 3.5MB and



Causes 84% of all L2 misses
(28% by each instruction)

...

tail =

while (arcin)
{

arcin−>tail;

if( 

   arcin= (arc_t *) tail−>mark;
   continue;
}

arcin= (arc_t *) tail−>mark
}

 tail−>time + arcin−>org_cost
{

 > latest)

Figure 2: Miss-causing instructions from the mcf benchmark

then the first “knee” of the MPKI curve occurs. LRU results in
thrashing for the baseline 1MB cache and almost all the inserted
lines are evicted before they can be reused. Both LIP and BIP retain
around 1MB out of the 3.5MB working set resulting in hits for at
least that fraction of the working set. For the baseline 1MB cache,
LRU incurs an MPKI of 136, both LIP and BIP incur an MPKI of
115 (17% reduction over LRU), and OPT incurs an MPKI of 101
(26% reduction over LRU). Thus, both LIP and BIP bridge two-
thirds of the gap between LRU and OPT without extra storage.
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Figure 3: MPKI vs. cache size for mcf and art

4.2.2 The art benchmark:
Figure 4 shows the code snippet from the scanner.c file of

the art benchmark containing the two load instructions that are re-
sponsible for 80% of all the misses for the baseline cache. The first
load instruction traverses an array of type f1 layer. The class of
f1 layer defines it as a neuron containing seven elements of
type double and one element of type pointer to double. Thus,
the size of each each object of type f1 layer is 64B. For ref-1
input set, numf1s=10000, therefore, the total size of the array of
f1 layer is 64B ∗ 10K = 640KB. The second load instruction
traverses a two dimensional array of type double. The total size
of this array is equal to 8B ∗ 11 ∗ 10K = 880KB. Thus, the size
of the working set of the kernel of art is approximately 1.5MB.

Figure 3 shows the MPKI of art for varying cache size under
LRU replacement. LRU is oblivious to the “knee” around 1.5MB
and causes thrashing for the baseline 1MB cache. Both LIP and BIP
prevent thrashing by retaining a significant fraction of the working
set in the cache. For the baseline 1MB cache, LRU incurs an MPKI
of 38.7, LIP incurs an MPKI of 23.6 (39% reduction over LRU),
BIP incurs an MPKI of 18 (54% reduction over LRU), and OPT
incurs an MPKI of 12.8 (67% reduction over LRU). Both LIP and
BIP are closer to OPT. The access to array bus[ti][tj] brings
in cache lines that are not used in later iterations. LIP retains these
lines in the cache while BIP can evict these lines. Hence, signifi-
cantly better MPKI with BIP compared to LIP.

}

{
for (tj=spot;tj<numf2s;tj++)

numf2s = numObjects+1;
// = 100*100 for ref input set
// = 10+1 for ref input set

numf1s = lwidth*lheight;

Y[tj].y +=  f1_layer[ti].P  bus[ti][tj] * ;
for (ti=0;ti<numf1s;ti++)
if( !Y[tj].reset )

Y[tj].y = 0; Causes 41% of all L2 misses

Causes 39% of all L2 misses

Figure 4: Miss-causing instructions from the art benchmark

4.2.3 The health benchmark:
Figure 5 shows a code snippet from the health.c file. It con-

tains the pointer de-referencing load instruction that is responsible
for more than 70% of the misses for the baseline cache.

while (list != NULL) {

p = list−>patient ;
...
list = list−>forward;

}

...

Causes 71% of all L2 misses

Figure 5: Miss-causing instruction from the health benchmark

The health benchmark can be approximated as a micro kernel
that performs linked list traversals with frequent insertions and dele-
tions. The size of the linked-list data structure increases dynami-
cally with program execution. Thus, the memory reference stream
can be approximated as a cyclic reference sequence for which the
period increases with time. To show the dynamic change in the
size of the working set, we split the benchmark execution into four
parts (of approximately 50M instructions each). Figure 6 shows the
MPKI of each of the four phases of execution of health as the cache
size is varied under the LRU policy.
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Figure 6: MPKI vs. cache size for health

During the first phase, the size of the working set is less than
the baseline 1MB cache so LRU works well. However, in the other
three phases, the size of the working set is greater than 1MB, which
causes thrashing with LRU. For the full execution of health, LRU
incurs an MPKI of 61.7, LIP incurs an MPKI of 38 (38.5% reduc-
tion over LRU), BIP incurs an MPKI of 39.5 (36% reduction over
LRU), and OPT incurs an MPKI of 34 (45% reduction over LRU).



4.3 Case Study of LRU-Friendly Workload
For workloads that cause thrashing with LRU, both LIP and BIP

reduce cache misses significantly. However, some workloads in-
herently favor the traditional policy of inserting the incoming line
at the MRU position. In such cases, changing the insertion policy
can hurt cache performance. An example of such a workload is the
swim benchmark from the SPEC FP suite. Swim performs matrix
multiplies in its kernel. The first “knee” of the matrix multiplica-
tion occurs at 1

2 MB while the second “knee” occurs at a cache
size greater than 64 MB. Figure 7 shows the MPKI for swim as the
cache size is increased from 1

8 MB to 64 MB under LRU policy.
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Figure 7: MPKI vs. cache size for swim (x-axis in log scale)

There is a huge reduction in MPKI as the cache size is increased
from 1

8 MB to 1
2 MB. However, subsequent increase in cache size

till 64 MB does not have a significant impact on MPKI. For the
baseline cache, the MPKI with both LRU and OPT are similar in-
dicating that there is no scope for reducing misses over the LRU
policy. In fact, changes to the insertion policy can only reduce the
hits obtained from the middle of the LRU stack for the baseline 1
MB cache. Therefore, both LIP and BIP increase MPKI signifi-
cantly over the LRU policy. For the baseline cache, LRU incurs an
MPKI of 23, LIP incurs an MPKI of 46.5, BIP incurs an MPKI of
44.3, and OPT incurs an MPKI of 22.8.

4.4 Results
Figure 8 shows the reduction in MPKI with the two proposed

insertion policies, LIP and BIP, over the baseline LRU replacement
policy. For BIP, we show results for ε = 1/64, ε = 1/32, and
ε = 1/16 which mean every 64th, 32nd, or 16th miss is inserted in
the MRU position respectively.2

The thrashing protection of LIP and BIP reduces MPKI by 10%
or more for nine out of the sixteen benchmarks. BIP has better
MPKI reduction than LIP for art and ammp because it can adapt
to changes in the working set of the application. For most appli-
cations that benefit from BIP, the amount of benefit is not sensitive
to the value of ε. For benchmarks equake, parser, bzip2 and swim
both LIP and BIP increase the MPKI considerably. This occurs be-
cause these workloads either have an LRU friendly access pattern,
or the knee of the MPKI curve is less than the cache size and there
is no significant benefit from increasing the cache size. For the in-
2In our studies, we restrict the value of ε to 1/power-of-two. To
implement BIP, a pseudo-random number generator is required.
If there is no pseudo-random number available then an n-bit free
running counter can be used to implement a 1-out-of-2n policy
(n = log2(1/ε)). The n-bit counter is incremented on every cache
miss. BIP inserts the incoming line in the MRU position only if
the value of this n-bit counter is zero. We experimented with both
gnu c rand function as well as the 1-out-of-2n policy and found the
results to be similar. Throughout the paper, we report the results for
BIP using the 1-out-of-2n policy assuming that a pseudo-random
number generator is not available on chip.
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Figure 8: Comparison of Static Insertion Policies

sertion policy to be useful for a wide variety of workloads, we need
a mechanism that can select between the traditional LRU policy
and BIP depending on which incurs fewer misses. The next section
describes a cost-effective run-time mechanism to choose between
LRU and BIP. For the remainder of the paper we use a value of
ε = 1/32 for all experiments with BIP.

5. DYNAMIC INSERTION POLICY
For some applications BIP has fewer misses than LRU and for

some LRU has fewer misses than BIP. We want a mechanism that
can choose the insertion policy that has the fewest misses for the
application. We propose a mechanism that dynamically estimates
the number of misses incurred by the two competing insertion poli-
cies and selects the policy that incurs the fewest misses. We call
this mechanism Dynamic Insertion Policy (DIP). A straightforward
method of implementing DIP is to implement both LRU and BIP
in two extra tag directories (data lines are not required to estimate
the misses incurred by an insertion policy) and keep track of which
of the two policies is doing better. The main tag directory of the
cache can then use the policy that incurs the fewest misses. Since
this implementation of DIP gathers information globally for all the
sets, and enforces a uniform policy for all the sets, we call it DIP-
Global.

5.1 The DIP-Global Mechanism
Figure 9 demonstrates the working of DIP-Global for a cache

containing sixteen sets. Let MTD be the main tag directory of the
cache. The two competing policies, LRU and BIP, are each im-
plemented in a separate Auxiliary Tag Directory (ATD). ATD-LRU
uses the traditional LRU policy and ATD-BIP uses BIP. Both ATD-
LRU and ATD-BIP have the same associativity as the MTD. The
access stream visible to MTD is also applied to both ATD-LRU
and ATD-BIP. A saturating counter, which we call Policy Selector
(PSEL), keeps track of which of the two ATDs incurs fewer misses.
All operations on PSEL are done using saturating arithmetic. A
miss in ATD-LRU increments PSEL and a miss in ATD-BIP decre-
ments PSEL. The Most Significant Bit (MSB) of PSEL is an indi-
cator of which of the two policies incurs fewer misses. If MSB of
PSEL is 1, MTD uses BIP, otherwise MTD uses LRU.

5.2 Implementing DIP via Set Dueling
The DIP-Global mechanism requires a substantial hardware over-

head of two extra tag directories. The hardware overhead of com-
paring two policies can be significantly reduced by using the Dy-
namic Set Sampling (DSS) concept proposed in [13]. The key in-
sight in DSS is that the cache behavior can be approximated with
a high probability by sampling few sets in the cache. Thus, DSS
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Figure 9: DIP-Global

can significantly reduce the number of ATD entries in DIP-Global
from thousand(s) of sets to about 32 sets.

Although DSS significantly reduces the storage required in im-
plementing the ATD (to around 2kB), it still requires building the
separate ATD structure. Thus, implementing DIP will still incur
the design, verification, and testing overhead of building the sep-
arate ATD structure. We propose Set Dueling, which obviates the
need for a separate ATD structure. The Set Dueling mechanism
dedicates few sets of the cache to each of the two competing poli-
cies. The policy that incurs fewer misses on the dedicated sets is
used for the remaining follower sets. An implementation of DIP
that uses Set Dueling is called DIP-SD.
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Figure 10: DIP via Set Dueling

Figure 10 demonstrates the working of DIP-SD on a cache con-
taining sixteen sets. Sets 0, 5, 10, and 15 are dedicated to the LRU
policy, and Sets 3, 6, 9, and 12 are dedicated to the BIP policy.
The remaining sets are follower sets. A miss incurred in the sets
dedicated to LRU increments PSEL, whereas, a miss incurred in
the sets dedicated to BIP decrements PSEL. If the MSB of PSEL
is 0, the follower sets use the LRU policy; otherwise the follower
sets use BIP. Note that Set Dueling does not require any separate
storage structure other than a single saturating counter.

DIP-SD compares the number of misses across different sets for
two competing policies. However, the number of misses incurred
by even a single policy varies across different sets in the cache.
A natural question is how does the per-set variation in misses of
the component policies affect the dynamic selection of Set Duel-
ing? Also, how many dedicated sets are required for DIP-SD to
approximate DIP-Global with a high probability? In Appendix A,
we derive analytical bounds3 for DIP-SD as a function of both the
number of dedicated sets and the per-set variation in misses of the
component policies. The analytical model shows that as few as 32-
64 dedicated sets are sufficient for Set Dueling to select between
LIP and BIP with a high probability. In Section 5.4 we compare
the misses incurred by DIP-SD and DIP-Global.

5.3 Dedicated Set Selection Policy
The dedicated set for each of the competing policies can be se-

lected statically at design time or dynamically at runtime. In this
section we describe our method of selecting the dedicated sets. Let
N be the number of sets in the cache and K be the number of sets
dedicated to each policy (in our studies we restrict the number of
dedicated sets to powers of 2). We logically divide the cache into
K equally-sized regions each containing N/K sets. Each such re-
gion is called a constituency [13]. One set is dedicated from each
constituency to each of the competing policies. Two bits associated
with each set can then identify the set as either a follower set or a
dedicated set to one of two competing policies.

We employ a dedicated set selection policy that obviates the need
for marking the leader set in each constituency on a per-set basis.
We call this policy the complement-select policy. For a cache with
N sets, the set index consists of log2(N) bits out of which the most
significant log2(K) bits identify the constituency and the remain-
ing log2(N/K) bits identify the offset from the first set in the con-
stituency. The complement-select policy dedicates to LRU all the
sets for which the constituency identifying bits are equal to the off-
set bits. Similarly, it dedicates to BIP all the sets for which the
complement of the offset equals the constituency identifying bits.
Thus for the baseline cache with 1024 sets, if 32 sets are to be ded-
icated to both LRU and BIP, then complement-select dedicates set
0 and every 33rd set to LRU, and Set 31 and every 31st set to BIP.
The sets dedicated to LRU can be identified using a five bit com-
parator for the bits [4:0] to bits [9:5] of the set index. Similarly, the
sets dedicated to BIP can be identified using another five bit com-
parator that compares the complement of bits [4:0] of the set index
to bits [9:5] of the set index. Unless stated otherwise, the default
implementation of DIP is DIP-SD with 32 dedicated sets using the
complement-select policy4 and a 10-bit5 PSEL counter.
3In [13] a Bernoulli model is used to derive the bounds for DSS.
However, as they used an ATD, they were comparing the two poli-
cies by implementing both policies for a few sampled sets. Their
analytical model does not consider the per-set variation in misses
incurred by the component policies. However, in our case, Set Du-
eling compares the component policies by implementing them on
different sets in the cache. Therefore, the analytical model for Set
Dueling must take into account the per-set variation in misses in-
curred by the component policies. Therefore, the bounds derived
in [13] are not directly applicable to Set Dueling.
4We also experimented with a rand-dynamic policy which ran-
domly dedicates one set from each constituency to each of the
two policies LRU and BIP. We invoke rand-dynamic once every
5M retired instructions. The MPKI with both rand-dynamic and
complement-select are similar. However, rand-dynamic incurs the
hardware overhead of bits for identifying the dedicated sets which
are not required for complement-select.
5For experiments of DIP-SD in which 64 sets are dedicated to each
policy, we use a 11-bit PSEL counter.
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Figure 11: Comparison of Insertion Policies

5.4 Results
Figure 11 shows reduction in MPKI with BIP, DIP-Global, and

DIP-SD with 32 and 64 dedicated sets. The bar labeled amean
is the reduction in arithmetic mean MPKI measured over all the
sixteen benchmarks. DIP-Global retains the MPKI reduction of
BIP while eliminating the significant MPKI increase of BIP on
benchmarks equake, parser, mgrid, and swim. With DIP-Global, no
benchmark incurs an MPKI increase of more than 2% over LRU.
However, DIP-Global requires a significant hardware overhead of
about 128kB. DIP-SD obviates this hardware overhead while ob-
taining an MPKI reduction similar to DIP-Global for all bench-
marks, except twolf. As the number of dedicated sets increases
from 32 to 64, the probability of selecting the best policy increases,
therefore DIP-SD with 64 dedicated sets behaves similar to DIP-
Global for twolf. However, having a large number of dedicated
sets also means that a higher fraction (n/N ) of sets always use
BIP, even if BIP increases MPKI. This causes the MPKI of swim
to increase by 5% with 64 dedicated sets. For ammp, DIP reduces
MPKI by 20% even though BIP increases MPKI. This happens be-
cause in one phase LRU has fewer misses and in the other phase
BIP has fewer misses. With DIP, the cache uses the policy best
suited to each phase and hence a better MPKI than each of the
component policies. We discuss the dynamic adaptation of DIP in
more detail in Section 5.5. On average, DIP-Global reduces aver-
age MPKI by 22.3%, DIP-SD (with 32 dedicated set) reduces aver-
age MPKI by 21.3%, and DIP-SD (with 64 dedicated set) reduces
average MPKI by 20.3%.

5.5 Adaptation of DIP to Application
DIP can adapt to different applications as well as different phases

of the same application. DIP uses the PSEL counter to select be-
tween the component policies. For a 10-bit PSEL counter, a value
of 512 or more indicates that DIP uses BIP, otherwise DIP uses
LRU. Figure 12 shows the value of the 10-bit PSEL counter over
the course of execution for the benchmarks mcf, art, health, swim,
and ammp. We sample the value of the PSEL counter once every
1M instructions. The horizontal axis denotes the number of instruc-
tions retired (in millions) and the vertical axis represents the value
of the PSEL counter.

For mcf, the DIP mechanism almost always uses BIP. For health,
the working set during the initial part of the program execution fits
in the baseline cache and either policy works well. However, as the
dataset increases during program execution, it exceeds the size of
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Figure 12: PSEL value during benchmark execution (horizon-
tal axis denotes the number of instruction in Millions)

the baseline cache and LRU causes thrashing. As BIP would have
fewer misses than LRU, the PSEL value reaches toward positive
saturation and DIP selects BIP. For the LRU friendly benchmark
swim, the PSEL value is almost always towards negative saturation,
so DIP selects LRU. Ammp has two phases of execution: in the first
phase LRU is better and in the second phase BIP is better. With DIP,
the policy best suited to each phase is selected; therefore, DIP has
better MPKI than either of the component policies standalone.

6. ANALYSIS

6.1 Varying the Cache Size
We vary the cache size from 1 MB to 8 MB and keep the asso-

ciativity constant at 16-way. Figure 13 shows the MPKI of both
LRU and DIP for four cache sizes: 1MB, 2MB, 4MB, and 8MB.
The MPKI values are shown relative to the baseline 1MB LRU-
managed cache. The bar labeled avg represents the arithmetic mean
MPKI measured over all the sixteen benchmarks. As mcf has high
MPKI, the average without mcf, avgNomcf, is also shown.
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Figure 13: Comparison of LRU and DIP for different cache size

DIP reduces MPKI more than doubling the size of the baseline
1MB cache for benchmarks mcf, facerec, and health. DIP con-
tinues to reduce misses for most benchmarks that benefit from in-
creased capacity. The working set of some benchmarks, e.g. vpr
and twolf, fits in a 2MB cache. Therefore, neither LRU nor DIP
reduces MPKI when the cache size is increased. Overall, DIP sig-
nificantly reduces average MPKI over LRU for cache sizes up to
4MB.

6.2 Bypassing Instead of Inserting at LRU
DIP uses BIP which inserts most of the incoming lines in the

LRU position. If such a line is accessed in the LRU position, only
then is it updated to the MRU position. Another reasonable design
point is to bypass the incoming line instead of inserting it in the
LRU position. A DIP policy that employs BIP which bypasses the
incoming line when the incoming line is to be placed in the LRU
position is called DIP-Bypass. Figure 14 shows the MPKI reduc-
tion of DIP and DIP-Bypass over the baseline LRU policy.
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Figure 14: Effect of Bypassing on DIP (The number associated
with benchmark shows the percentage of misses bypassed).

For all benchmarks, except art, facerec, and sixtrack, DIP re-
duces MPKI more than DIP-Bypass. This happens because DIP
promotes the line installed in the LRU position to the MRU po-
sition if the line is reused, thus increasing the useful lines in the
non-LRU positions. On the other hand, DIP-Bypass has the ad-
vantage of power savings as it avoids the operation of inserting the
line in the cache. The percentage of misses that are bypassed by
DIP-Bypass are shown in Figure 14 by a number associated with
each benchmark name. Thus, the proposed insertion policies can
be used to reduce misses, cache power or both.

6.3 Impact on System Performance
To evaluate the effect of DIP on the overall processor perfor-

mance, we use an in-house execution-driven simulator based on
the Alpha ISA. The relevant parameters of our model are given in
Table 5. The processor we model is a four-wide machine with out-
of-order execution. Store misses do not block the instruction win-
dow unless the 128-entry store buffer is full. The baseline system
contains a 1MB 16-way L2 cache which uses LRU replacement.
Write-backs from L1 to L2 do not update the replacement informa-
tion in L2.

Table 4: Baseline system configuration
Machine width 4 instructions/cycle, 4 functional units
Inst. window size 32 instructions
Branch predictor Hybrid 64k-entry gshare, 64k-entry PAs

misprediction penalty is 10 cycles min.
L1 inst. cache 16kB, 64B linesize, 2-way with LRU repl.
L1 data cache 16kB, 64B linesize, 2-way, 2 cycle hit
L2 unified cache 1MB, 64B linesize, 16-way, 6 cycle hit

128-entry store buffer.
Main memory 32 banks, 270 cycle bank access
Off-chip bus Proc. to bus speed ratio 4:1; 8B/bus-cycle

Figure 15 shows the performance improvement measured in in-
structions per cycle (IPC) between the baseline system and the
same system with DIP. The bar labeled gmean is the geometric
mean of the individual IPC improvements seen by each benchmark.
The system with DIP outperforms the baseline by an average of
9.3%. DIP increases the IPC of benchmarks art, mcf, facerec, and
health by more than 15%.
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Figure 15: IPC improvement with DIP



6.4 Hardware Overhead and Design Changes
The proposed insertion policies (LIP, BIP, and DIP) require neg-

ligible hardware overhead and design changes. LIP inserts all in-
coming lines in the LRU position, which can easily be implemented
by not performing the update to the MRU position that occurs on
cache insertion.6 BIP is similar to LIP, except that it infrequently
inserts an incoming line into the MRU position. To control the
rate of MRU insertion in BIP, we use a five-bit counter (BIPCTR).
BIPCTR is incremented on every cache miss. BIP inserts the in-
coming line in the MRU position only if the BIPCTR is zero. Thus,
BIP incurs a storage overhead of 5 bits. DIP requires storage for
the 10-bit saturating counter (PSEL). The complement-select pol-
icy avoids extra storage for identifying the dedicated sets.

00
01
10
11

dedicated_BIP_set

N/A
1BIPCTR ==0

(SetIndex[9:5] == ~SetIndex[4:0])

 PSEL[MSB]

dedicated_LRU_set
(SetIndex[9:5] == SetIndex[4:0])

~
EXISTING 

DataBusTagSetIndex[9:0]

CACHE MODULE
Update recency at insert

Figure 16: Hardware changes for implementing DIP

Figure 16 shows the design changes incurred in implementing
DIP. The implementation requires a total storage overhead of 15
bits (5-bit BIPCTR + 10-bit PSEL) and negligible logic overhead.
A particularly attractive aspect of DIP is that it does not require ex-
tra bits in the tag-store entry, thus avoiding changes to the existing
structure of the cache. The absence of extra structures also means
that DIP does not incur power and complexity overheads. As DIP
does not add any logic to the cache access path, the access time of
the cache remains unaffected.

7. RELATED WORK
Cache replacement studies have received much attention from

both industry and academia. We summarize the work that most
closely relates to the techniques proposed in this paper, distinguish-
ing our work where appropriate.

7.1 Alternative Cache Replacement Policies
The problem of thrashing can be mitigated with replacement

schemes that are resistant to thrashing. If the working set of an
application is only slightly greater than the available cache size,
then even a naive scheme such as random replacement can have
fewer misses than LRU. For the baseline cache random replace-
ment reduces MPKI for the thrashing workloads: art by 34%, mcf
by 1.6%, facerec by 14.4%, and health by 16.9%, whereas, DIP
reduces MPKI for art by 54%, mcf by 17%, facerec by 36% and
health by 35%. Thus, the effectiveness of random replacement at
reducing misses significantly reduces as the size of the working set
increases. In [4], an analytical model that captures and explains the
difference in performance of various cache replacement policies is
studied. Several studies [15][5][14] have looked at including fre-
quency (reuse count) information for improving cache replacement.

6LIP, BIP, and DIP do not rely on true LRU which makes them
amenable to the LRU approximations widely used in current on-
chip caches.

7.2 Hybrid Replacement
For workloads that cause thrashing with LRU, both random-based

and frequency-based replacement schemes have fewer misses than
LRU. However, these schemes significantly increase the misses for
LRU-friendly workloads. Recent studies have investigated hybrid
replacement schemes that dynamically select from two or more
competing replacement policies. Examples of hybrid replacement
schemes include Sampling-Based Adaptive Replacement (SBAR)
[13] and Adaptive Cache (AC) [18]. The problem with hybrid
replacement is that it may require tracking separate replacement
information for each of the competing policies. For example, if
the two policies are LRU and LFU (Least Frequently Used), then
each tag-entry in the baseline cache needs to be appended with fre-
quency counters (≥ 5-bits each) which must be updated on each
access. Also, the dynamic selection requires extra structures (2kB
for SBAR and 34kB for AC) which consume hardware and power.
Table 5 compares SBAR-based hybrid replacement7 between LRU
and the following schemes: MRU-Repl replaces the MRU line,
NMRU-mid [4] replaces a line randomly from the less recent half
of the recency stack, Rand is random replacement, RLRU-Skew
(RMRU-Skew) [4] is a skewed random policy that uses a linearly in-
creasing (decreasing) replacement probability for recency positions
ranging from MRU to LRU, and LFU is the least frequently used
policy implemented using five-bit saturating counters [18]. DIP
outperforms the best performing hybrid-replacement while obviat-
ing the design changes, hardware overhead, power overhead, and
complexity of hybrid replacement. In fact, DIP bridges two-third
of the gap between LRU and OPT while requiring less than two
bytes of extra storage.

Table 5: Comparison of replacement policies
Replacement Policy %Reduction in Hardware

MPKI over LRU Overhead
SBAR (LRU + MRU-Repl) 8.8 2 kB
SBAR (LRU + NMRU-mid) 5.1 2 kB

SBAR (LRU + Rand) 8.9 2 kB
SBAR (LRU + RLRU-Skew) 6.6 2 kB
SBAR (LRU + RMRU-Skew) 11.3 2 kB

SBAR (LRU + LFU) 14.7 12 kB
DIP 21.3 2 B

Belady’s OPT 32.2 N/A

7.3 Related Work in Paging Domain
We also analyze some of the related replacement studies from

the paging domain. Early Eviction LRU (EELRU) [17] tracks the
hits obtained from each recency position for a larger sized cache. If
there are significantly more hits from the recency positions larger
than the cache size, EELRU changes the eviction point of the res-
ident pages. For the studies reported in [17], EELRU tracked 2.5
times as many pages as in physical memory. We analyzed EELRU
for our workloads with 2.5 times the tag-store entries. EELRU re-
duces the average MPKI by 13.8% compared to DIP which reduces
average MPKI by 21.3%.

A recent proposal, Adaptive Replacement Cache (ARC) [11],
maintains two lists: recency list and frequency list. The recency list
contains pages that were touched only once while resident, whereas
the frequency list contains pages that were touched at least twice.
ARC dynamically tunes the number of pages devoted to each list.
We simulated ARC for our workloads and found that ARC reduces
average MPKI by 5.64% and requires 64kB storage.
7The MPKI reduction provided by SBAR and AC are similar [18].



7.4 Cache Bypassing and Early Eviction
Several studies have investigated cache bypassing and early evic-

tion. McFarling[10] proposed dynamic exclusion to reduce conflict
misses in a direct-mapped instruction cache. Gonzalez et al. [3]
proposed using a locality prediction table to bypass access patterns
that are likely to pollute the cache. Johnson [6] used reuse counters
with a macro address table to bypass lines with low reuse. Several
proposals [19] [21][20] exist for bypassing or early eviction of lines
brought by instructions with low locality. Another area of research
has been to predict the last touch to a cache line [8] [9]. After the
predicted last touch, the line can either be turned off [7] or be used
to store prefetched data [8].

However, locality, liveness and last touch are a function of both
the replacement policy and the available cache size. For example,
if a cyclic reference pattern with a working set size slightly greater
than the available cache size is applied to a LRU-managed cache,
all the inserted lines will have poor locality, will be dead as soon
as they are installed, and will have their last touch at insertion. The
solution in such a case is neither to bypass all the lines nor to evict
them early, but to retain some fraction of the working set so that it
provides cache hits. DIP retains some fraction of the working set
for longer than LRU, thus obtaining hits for at least those lines.

8. CONCLUSIONS AND FUTURE WORK
The commonly used LRU replacement policy performs poorly

for memory-intensive workloads that reuse a working set greater
than the available cache size. The LRU policy inserts a line and
evicts it before it is likely to be reused causing a majority of the
lines in the cache to have zero reuse. In such cases, retaining some
fraction of the working set would provide hits for at least that frac-
tion of the working set. This paper separates the problem of re-
placement into two parts: victim selection policy and insertion
policy. Victim selection deals with which line gets evicted to install
the incoming line. The insertion policy deals with where on the re-
placement stack the incoming line is placed when installing it in
the cache. We show that simple changes to the insertion policy can
significantly improve the cache performance of memory-intensive
workloads, and make the following contributions:

1. We propose the LRU Insertion Policy (LIP) which inserts all
the incoming lines in the LRU position. We show that LIP
can protect against thrashing and yields close to optimal hit-
rate for applications with a cyclic reference pattern.

2. We propose the Bimodal Insertion Policy (BIP) as an en-
hancement to LIP that allows for aging and adapting to changes
in the working set of an application. BIP infrequently inserts
an incoming line in the MRU position, which allows it to
respond to changes in the working set while retaining the
thrashing protection of LIP.

3. We propose a Dynamic Insertion Policy (DIP) that dynami-
cally chooses between BIP and traditional LRU replacement.
DIP uses BIP for workloads that benefit from BIP while re-
taining traditional LRU for workloads that are LRU-friendly
and incur increased misses with BIP.

4. We propose Set Dueling to implement cost-effective dynamic
selection between competing policies. Set Dueling dedicates
a small percentage of sets in the cache to each of the two
component policies and chooses the policy that has fewer
misses on the dedicated set for the remaining follower sets.
Set Dueling does not require any additional storage, except
for a single saturating counter.

We show that DIP reduces the average MPKI of a 1MB 16-way
L2 cache by 21%, while incurring less than two bytes of storage
overhead and almost no change to the existing cache structure.

Although this study evaluated the cache performance of work-
loads on a uni-processor system, it provides insights that can eas-
ily be extended to shared caches in a multi-core system. Set Du-
eling can be also be applied for cost-effective implementation of
optimizations such as choosing between different cache manage-
ment policies, dynamically tuning prefetchers, or detecting phase
changes. Exploring these extensions is a part of our future work.
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Appendix A: Analytical Model for Set Dueling

Let there be N sets in the cache. Let Set Dueling be used to choose
between two policies P1 and P2. When policy P1 is implemented
on all the sets in the cache, the average number of misses per set is
µ1 with standard deviation σ1. Similarly, when policy P2 is imple-
mented on all the sets in the cache, the average number of misses
per set is µ2 with standard deviation σ2. Let ∆ denote the dif-
ference in average misses |µ1 − µ2| and σ denote the combined
standard deviation

p

σ2
1 + σ2

2 .

Let n sets be randomly selected from the cache to estimate the
misses with policy P1 and another group of n sets be randomly se-
lected to estimate the misses with policy P2. We assume that the
number of dedicated sets n is sufficiently large such that by the
central limit theorem [16] the sampling distribution can be approx-
imated as a Gaussian distribution. We also assume that n is suffi-
ciently small compared to the total number of sets in the cache (N)
so that removing the n sets does not significantly change the mean
and standard deviation of the remaining (N − n) sets. To derive
the bounds for Set Dueling we use the following well-established
results [16] for sampling distribution: If the distribution of two
independent random variables have the means µa and µb and the
standard deviation σa and σb, then the distribution of their sum (or
difference) has the mean µa + µb (or µa − µb ) and the standard
deviation

p

σ2
a + σ2

b .

Let sum1 be the total number of misses for the n sets dedicated
to policy P1. Then, by central limit theorem, sum1 can be ap-
proximated as a Gaussian random variable with mean µsum1 and
standard deviation σsum1, given by:

µsum1 = n · µ1 (1)

σsum1 =
q

X

σ2
1 =

√
n · σ1, (2)

Similarly, let sum2 be the total number of misses for the n sets
dedicated to policy P2. Then, sum2 can also be approximated as a
Gaussian random variable with mean µsum2 and standard deviation
σsum2, given by:

µsum2 = n · µ2 (3)

σsum2 =
q

X

σ2
2 =

√
n · σ2, (4)

The PSEL counter tracks the difference in sum1 and sum2 and
selects the policy that has fewer misses on the sampled sets. Let θ
be the difference in value of the two sums, i.e. θ = sum1− sum2.
Because sum1 and sum2 are Gaussian random variables, θ is also
a Gaussian random variable with mean µθ and standard deviation
σθ given by:

µθ = µsum1 − µsum2 = n · µ1 − n · µ2 = n · (µ1 − µ2) (5)

σθ =
q

σ2
sum1 + σ2

sum2 =
q

n · σ2
1 + n · σ2

2 (6)

=
√

n ·
q

σ2
1 + σ2

2 =
√

n · σ, (7)

where σ =
p

σ2
1 + σ2

2

Let policy P2 have fewer misses than policy P1, i.e. µ1 > µ2.
Then, for Set Dueling to select the best policy, θ > 0. If P (Best) is
the probability that Set Dueling selects the best policy, then P (Best)
can be written as:

P (Best) = P (θ > 0) = P (
(θ − µθ)

σθ
>

(0 − µθ)
σθ

) (8)

P (Best) = P (Z >
−n · (µ1 − µ2)√

n · σ
), (9)

where Z = (θ−µθ)
σθ

is the standard Gaussian variable

P (Best) = 1 − P (Z >
n · (µ1 − µ2)√

n · σ
) (10)

as P (Z > −z) = 1 − P (Z > z)

P (Best) = 1−P (Z >
√

n·∆
σ

), where ∆ = |µ1−µ2| , µ1 > µ2

(11)

P (Best) = 1 − P (Z >
√

n · r), where r =
∆
σ

(12)

Z is the standard Gaussian variable for which the value P (Z > z)
can be obtained using standard statistical tables. Equation 12 can
be used to compute P(Best) for any two policies. For example, if
for policy P1, µ1 = 100 and σ1 = 12 and for policy P2, µ2 = 94
and σ2 = 16. Then, ∆ = 6, σ = 20 and r = 0.3. For n=32,
P (Best) = 1 − P (Z >

√
32 · 0.3) = 1 − P (Z > 1.7) = 96%.
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Figure 17: Analytical Bounds for Set Dueling

Figure 17 shows the variation in P(Best) as the number of dedi-
cated sets is changed for different values of the r metric. The r met-
ric is a function of workload, cache organization, and the relative
difference between the two policies. For most of the benchmarks
studied, the r-metric for the two policies LRU and BIP is more than
0.2 indicating that 32-64 sampled sets are sufficient for Set Dueling
to select the best policy with a high probability. Thus, Set Dueling
can be implemented by dedicating about 32 to 64 sets to each of
the two policies, LRU and BIP, and using the winning policy (of
the dedicated sets) for the remaining sets.
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